SOHC SWISS ONCOLOGY & HEMATOLOGY CONGRESS Presented at SOHC 2024 from 20-22 November 2024

lucas.gautier@chuv.ch, lorenzo.alberio@chuv.ch

Introduction

Liver cirrhosis (LC) has a prevalence >1%, with an increase of over 80% in the last 30 years. LC is responsible for ca. 2% of deaths worldwide, notably due to thrombo-haemorrhagic complications. The mechanisms that regulate fibrinolysis may be interesting drug targets.

The aim of this study was to investigate fibrinolysis in plasma from patients with LC using (i) a global fibrinolytic assay (GFA) (Hyphen, France), (ii) a calibrated generation (PG) plasmin assav (Thrombinoscope, Netherlands), (iii) measurement of liver-produced proteins related to fibrinolysis, fibrinogen (fbg), factor XIII (FXIII), plasminogen (plg), α_2 antiplasmin (α_2 -AP) and thrombinactivatable fibrinolytic inhibitor (TAFI), and to correlate the results with clinical events.

Methods

Plasma collected from 150 patients with Child-A, -B and -C LC. The 3 assays:

Parameters impacting fibrinolysis in patients with liver cirrhosis

Hemostasis, transfusion medicine, vascular, laboratory medicine

Lucas A. Gautier¹, Ilaria De Simone², Alessandro Aliotta¹, Lucas Veuthey¹, Dana Huskens², Bas de Laat², Cindy Pereira Portela¹, Maxime G. Zermatten¹, Montserrat Fraga³, Debora Bertaggia Calderara¹, Lorenzo Alberio¹ ¹Division and Central Laboratory of Haematology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland ²Synapse Research Institute, Maastricht, The Netherlands ³Division of Gastroenterology and Hepatology, Lausanne University Hospital (CHUV) and University of Lausanne, Switzerland

A. GFA lysis time

D. PG Velocity Index

6

C. PG Peak Height

Results

Figure 1. GFA (global fibrinolytic assay) lysis time and PG (plasmin generation) according to LC (liver cirrhosis) clinical severity GFA lysis time (Fig. 1A) and PG (Fig.

1B, 1C, 1D) (red line represents median) were all significantly reduced as a function of increasing LC clinical severity (p<0.01). Plasma concentrations of liverproduced proteins involved in fibrinolysis followed the same pattern (not shown here).

Figure 2. GFA (global fibrinolytic assay) lysis time according to α_2 -AP (α_2 -antiplasmin) and fbg (fibrinogen) concentrations GFA lysis time was strongly directly

correlated (p<0.0001) with α_2 -AP $(R^2=0.47)$ and fbg $(R^2=0.41)$ levels, more than any other measured parameter.

50

٥

0

2

fibrinogen [g/L]

B. PG Endogenous

Conclusion

The concentrations of α_2 -AP and fbg, the stage of LC, and the presence of portal hypertension (PHT) (not shown) seem to be crucial for the lysis time assessed by the GFA Lysis Timer in patients with LC, while PG is strongly affected by the clinical stage of LC. However, in a further one-year clinical follow-up, the GFA lysis time and the main PG parameters were not able to predict the occurrence of thrombo-haemorrhagic events. The development of other plasma lysis models focusing on either clot resistance or plasma lytic capacity is necessary to test their correlation with thrombo-haemorrhagic events in patients with LC.

200

250

Conflict of interest : Synapse Research Institute is part of the Diagnostica Stago Group

100

 α_2 -antiplasmin [%]

150