

Innovative CAR

(INCAR)

Therapy Platforms

CD19 CAR T Cells drive a remodeling of the Immune Microenvironment associated with T-cell dysfunction in B-Cell Acute Lymphoblastic Leukemia

M. Ponzo¹, L. Drufuca², C. Buracchi³, M. Sindoni³, S. Nucera³, R. Bason², G. Rossetti², R. Bonnal², S. Galimberti⁵, A. Biondi³, G. Gaipa³, M. Pagani², C. F. Magnani¹ ¹Department of Medical Oncology and Hematology, University Hospital Zurich, ²Molecular Oncology (IFOM), Milano, ³Fondazione IRCCS San Gerardo dei Tintori, Tettamanti Center, Monza, ⁴Department of Oncology-Hematology, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, ⁵Department of Medicine and Surgery, University of Milano - Bicocca, Monza

CAR T cells promote myeloid, and MDSC recruitment in the BM microenvironment in response to CAR T-cell-mediated inflammation, which may antagonize the effect of CAR T-cell therapy. Hypoxia have a role in exacerbating CAR T cell dysfunction and exhaustion. Mitigation of the pathway of Hypoxia and could restore CAR T cells activity and persistence in vitro This study provide novel and potential therapeutic targets within the tumor microenvironment that antagonize the effects of CAR T cell therapy.

Category Experimental Hematology / Oncology

Conclusions

Acknowledgements

Contact Information